Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(2): 43, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36643402

RESUMEN

The production of second-generation bioethanol has several challenges, among them finding cheap and efficient enzymes for a sustainable process. In this work, we analyzed two native fungi, Cladosporium cladosporioides and Penicillium funiculosum, as a source of cellulolytic enzyme production, and corn stover, wheat bran, chickpeas, and bean straw as a carbon source in two fermentation systems: submerged and solid fermentation. Corn stover was selected for cellulase production in both fermentation systems, because we found the highest enzymatic activities when carboxymethyl cellulase activity (CMCase) was assessed using CMC as substrate. C. cladosporioides showed the highest CMCase activity (1.6 U/mL), while P. funiculosum had the highest filter paper activity (Fpase) (0.39 U/mL). The ß-glucosidase activities produced by both fungi were similar in submerged fermentation using corn stover as substrate. Through in-gel zymography, three polypeptides with cellulolytic activities were identified in each fungus: with molecular weights of ~ 38, 45 and 70 kDa in C. cladosporioides and ~ 21, 63 and 100 kDa in P. funiculosum. The best results for saccharification (10.11 g/L of reducing sugars) of diluted acid pretreated corn stover were obtained after 36 h of the hydrolytic process at pH 5 and 50 °C using the enzyme extract of P. funiculosum. This is the first report of cellulase identification in C. cladosporioides and the saccharification of corn stover using enzymes of this fungus. Enzymatic extracts of C. cladosporioides and P. funiculosum obtained from low-cost lignocellulosic biomass have great potential for use in the production of second-generation bioethanol.

2.
Biotechnol Lett ; 44(12): 1447-1463, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36326957

RESUMEN

Biochemical and kinetic properties are of special interest for the specific applications of α-amylases in industrial sectors such as textile industries, detergents, biofuels and food among others. Therefore, protein engineering is currently directed towards a continuous demand to improve the properties of amylases and thus meet the specific characteristics for various industrial sectors. In the present work, modular protein engineering was performed to improve the biochemical and kinetic properties of AmyJ33r an α-amylase isolated from Bacillus siamensis JJC33M consisting of five domains, A, B, C, D and E (SBD) (Montor-Antonio et al. in 3 Biotech 7:336, 2017. https://doi.org/10.1007/s13205-017-0954-8 ). AmyJ33r is not active on native starch, only showing activity on gelatinized starch. At the C-terminal, AmyJ33r has a starch binding domain (SBD, domain E) belonging to the CBM26 family. In this study, four truncated versions were constructed and expressed in E. coli (AmyJ33-AB, AmyJ33-ABC, AmyJ33-ABCD, and SBD) to determine the role of the A, B, C, D, and E domains in the biochemical behavior of AmyJ33r on starch. Biochemical and kinetic characterization of the truncated versions showed that domain C is essential for catalysis; domain D improved enzyme activity at alkaline pH values, is also involved negatively in thermostability at 40, 50, and 60 °C and its presence favored the production of maltooligosaccharides with a higher degree of polymerization (DP4). E domain have interaction with raw starch, also the deletion of E domain (SBD) favors the affinity for the substrate while the deletion of D domain increased enzyme kcat at the time of product release. In conclusion, AmyJ33-ABC has better kinetic parameters than AmyJ33-ABCD and AmyJ33r, but is less stable than these two enzymes.


Asunto(s)
Amilasas , Escherichia coli , alfa-Amilasas/genética , Amilasas/genética , Catálisis , Escherichia coli/genética , Almidón , Biocatálisis
3.
Carbohydr Polym ; 298: 120097, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36241278

RESUMEN

Biorefinery with deep eutectic solvent (DES) is an emerging processing technology to overcome the shortcomings of conventional biomass pretreatments. This work evaluates the biorefinery of sugarcane bagasse (SCB) with DES formulated with choline chloride as hydrogen bond acceptor and three hydrogen bond donors: lactic acid, citric acid, and acetic acid. Acetic acid showed unique ionic properties responsible for the selective removal of lignin and the deconstruction of cellulose to improve the digestibility of up to 97.61 % of glucan and 63.95 % of xylan during enzymatic hydrolysis. In addition, the structural characteristics of the polysaccharide-rich material (PRM) were analyzed by X-rays, ATR-FTIR, SEM, and enzymatic hydrolysis, and compared with the original material sample, for a comprehensive understanding of biomass deconstruction using different hydrogen bond donors (HBD) as DES pretreatment.


Asunto(s)
Lignina , Saccharum , Ácido Acético , Biomasa , Celulosa/química , Colina/química , Ácido Cítrico , Disolventes Eutécticos Profundos , Grano Comestible , Glucanos , Hidrólisis , Ácido Láctico , Lignina/química , Polisacáridos , Solventes/química , Xilanos
4.
Biotechnol Appl Biochem ; 69(1): 198-208, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33459401

RESUMEN

The objective of this work was to evaluate the biochemical characteristics of an enzymatic extract obtained from autochthonous fungus Aspergillus niger ITV02 and its application in the enzymatic hydrolysis of wheat straw and corn stubble pretreated by steam explosion. The enzymatic extract was obtained by submerged fermentation using delignified sweet sorghum bagasse as a carbon source. The results obtained showed that the enzymatic extract had ß-glucosidase and endoglucanase activities. The effects of pH and temperature on cellulase activity were evaluated and its thermostability was determined. The optimal parameters of the ß-glucosidase and endoglucanase activities obtained were pH 5 and 70 °C. The enzymatic extract of A. niger ITV02 was used to hydrolyze wheat straw and corn stubble, and the hydrolysis yields were compared with those obtained by a commercial cellulase (Celluclast 1.5L NS 50013) and CellicCTec3. The results showed that with the use the mixture of Celluclast 1.5L-A. niger ITV02 and CellicCTec3-A. niger ITV02 in the hydrolysis, conversions of 86.36% and 67.8% were obtained, respectively. Glucose production for the mixture extract increased 2.15 times more than when the enzyme was used independently alone. The present work shows that A. niger ITV02 has a potential as an enzyme producer for lignocellulosic hydrolysis.


Asunto(s)
Celulasa , Aspergillus niger/metabolismo , Biomasa , Celulasa/metabolismo , Fermentación , Hidrólisis , Lignina
5.
Biotechnol Lett ; 42(11): 2271-2283, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32533374

RESUMEN

OBJECTIVES: To evaluate a strain of Fusarium verticillioides ITV03 isolated from wood residues in the Veracruz region of Mexico. Endoglucanase and ß-glucosidase production by submerged fermentation was optimized using a Box-Behnken design, where the independent variables were urea, ammonium sulfate and yeast extract. RESULTS: After optimization, an endoglucanase activity of 0.27 U/mL was achieved; subsequently, three carbon sources were evaluated (carboxymethyl cellulose, sweet sorghum bagasse cellulose and delignified sweet sorghum bagasse (DSSB). The results showed that DSSB yielded the greatest endoglucanase (0.28 U/mL) and ß-glucosidase (0.12 U/mL) activities. Both enzymatic activities were characterized for the effect of pH, temperature and thermostability. The optimal parameters of ß-glucosidase and endoglucanase activity were pH 5 and 4 respectively, the optimum temperature 60 °C. These enzymes were stable at 50 °C for 150.68 h and 8.54 h, with an activation energy (Ea(day)) of 265.55 kJ/mol and 44.40 kJ/mol respectively, for ß-glucosidase and endoglucanase. CONCLUSION: The present work shows that a native strain like F. verticillioides ITV03 using DSSB supplemented with nitrogen has a great potential as a producer of cellulase for lignocellulosic residue hydrolysis.


Asunto(s)
Celulosa/química , Endo-1,4-beta Xilanasas/metabolismo , Fusarium/crecimiento & desarrollo , Sorghum/química , beta-Glucosidasa/metabolismo , Medios de Cultivo/química , Estabilidad de Enzimas , Fermentación , Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Fusarium/aislamiento & purificación , Calor , Concentración de Iones de Hidrógeno , México , Nitrógeno/química , Madera/microbiología
6.
Bioprocess Biosyst Eng ; 43(4): 747-752, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31758239

RESUMEN

Plant suspension culture is attracting interest as a promising platform to produce biological medicines due to the absence of virus, prions or DNA related to mammals during the production process. However, the heterogenic plant cell proliferation nature is particularly challenging for establishing industrial processes based on innovative approaches currently used, particularly in the animal cell culture industry. In this context, while Process Analytical Technology (PAT) tools have been used to monitor classical parameters such as biomass dry weight, its use in cells heterogeneity has received limited attention. Therefore, the feasibility of in situ monitoring of cell differentiation in plant cell suspensions employing NIR spectroscopy and chemometrics was investigated. Off-line measurements of cell heterogeneity in term of cell differentiation and in-line NIR spectra captured in 3 L bioreactor cultures were employed to generate calibration models. Then models were tested to estimate the population distribution of parenchyma, collenchyma and sclerenchyma cells during Catharanthus roseus suspension cultures. Results have proven in situ NIR spectroscopy as a capable PAT tool to monitor differentiated cells accurately and in real-time. These results are the starting point to follow-up PAT systems so that plant cell culture heterogeneity may be better understood and controlled in biopharmaceutical plant cell cultures.


Asunto(s)
Reactores Biológicos , Catharanthus , Diferenciación Celular , Células Vegetales/metabolismo , Catharanthus/citología , Catharanthus/metabolismo
7.
Eng Life Sci ; 18(9): 643-653, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32624944

RESUMEN

The application of in situ near-infrared spectroscopy monitoring of xylose metabolizing yeast such as Pichia stipitis for ethanol production with semisynthetic media, applying chemometrics, was investigated. During the process in a bioreactor, biomass, glucose, xylose, ethanol, acetic acid, and glycerol determinations were performed by a transflection probe immersed in the culture broth and connected to a near-infrared process analyzer. Wavelength windows in near-infrared spectra recorded between 800 and 2200 nm were pretreated using Savitzky-Golay smoothing, second derivative and multiplicative scattering correction in order to perform a partial least squares regression and generate the calibration models. These calibration models were tested by external validation (78 samples). Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. Moreover, regressions coefficients (ß) and variable influence in the projection plots were used to assess the results. A novelty is the use of ß versus VIP dispersion plots to determine which vectors have more influence on the response in order to improve process comprehension and operability. Validated models were used in a real-time monitoring during P. stipitis NRRL Y7124 semisynthetic media fermentations.

8.
Curr Microbiol ; 73(4): 561-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27431730

RESUMEN

Raw vine-trimming wastes or the solid residues obtained after different fractionation treatments were evaluated for their suitability as Amycolatopsis sp. immobilization carriers during the bioconversion of ferulic acid into valuable phenolic compounds such as vanillin, vanillyl alcohol, and vanillic acid, the main flavor components of vanilla pods. Previously, physical-chemical characteristics of the materials were determined by quantitative acid hydrolysis and water absorption index (WAI), and microbiological characteristics by calculating the cell retention in the carrier (λ). Additionally, micrographics of carrier surface were obtained by field emission-scanning electron microscopy to study the influence of morphological changes during pretreatments in the adhesion of cells immobilized. The results point out that in spite of showing the lowest WAI and intermediate λ, raw material was the most appropriated substrate to conduct the bioconversion, achieving up to 262.9 mg/L phenolic compounds after 24 h, corresponding to 42.9 mg/L vanillin, 115.6 mg/L vanillyl alcohol, and 104.4 mg/L vanillic acid. The results showed the potential of this process to be applied for biotechnological production of vanillin from ferulic acid solutions; however, further studies must be carried out to increase vanillin yield. Additionally, the liquors obtained after treatment of vine-trimming wastes could be assayed to replace synthetic ferulic acid.


Asunto(s)
Actinomycetales/metabolismo , Benzaldehídos/metabolismo , Alcoholes Bencílicos/metabolismo , Ácido Vanílico/metabolismo , Residuos/análisis , Biotecnología , Biotransformación , Ácidos Cumáricos/metabolismo
9.
Biotechnol Prog ; 32(2): 510-7, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26743160

RESUMEN

The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky-Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510-517, 2016.


Asunto(s)
Reactores Biológicos , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectroscopía Infrarroja Corta , Calibración , Etanol/análisis , Fermentación , Análisis de los Mínimos Cuadrados , Saccharomyces cerevisiae/química
10.
J Sci Food Agric ; 94(9): 1844-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24288244

RESUMEN

BACKGROUND: Avocado (Persea americana Mill, cv. Hass) fruit ranks tenth in terms of the most important products for Mexico. Avocado products are quite unstable due to the presence of oxidative enzymes such as polyphenol oxidase and peroxidase. The present study is to characterize the activity of purified avocado peroxidase from avocado in order to ascertain the biochemical and kinetic properties and their inhibition conditions. RESULTS: Purification was performed by Sephacryl S 200 HR gel filtration chromatography and its estimated molecular weight was 40 kDa. The zymogram showed an isoelectric point of 4.7. Six substrates were tested in order to ascertain the affinity of the enzyme for these substrates. The purified peroxidase was found to have low Km (0.296 mM) and high catalytic efficiency (2688 mM(-1) s(-1)) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), optimum activity being reached at 51°C, pH 3.8. The addition of dithiothreitol, ß-mercaptoethanol, ascorbic acid, sodium azide, L-cysteine and Tween-20 had high inhibitory effects, while metals ions such as Cu(+), Fe(2+) and Mn(2+) had weak inhibitory activity on purified avocado peroxidase. CONCLUSION: The purified avocado peroxidase exhibits high inhibition (Ki = 0.37 µM) with 1.97 µM n-propyl gallate using ABTS as substrate at 51°C, pH 3.8 for 10 min.


Asunto(s)
Frutas/química , Peroxidasas/metabolismo , Persea/química , Inhibidores Enzimáticos/farmacología , Conservación de Alimentos , Humanos , Oxidación-Reducción , Peroxidasas/aislamiento & purificación
11.
Appl Microbiol Biotechnol ; 98(1): 151-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24136467

RESUMEN

Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD(+) in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved.


Asunto(s)
Alginatos , Reactores Biológicos/microbiología , Células Inmovilizadas/metabolismo , Microesferas , Saccharomycetales/metabolismo , Xilitol/metabolismo , Aire , Técnicas de Cultivo Celular por Lotes , Ácido Glucurónico , Ácidos Hexurónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...